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 

Abstract— Awareness of electric energy usage has both societal 

and economic benefits, which include reduced energy bills and 

stress on non-renewable energy sources. In recent years, there has 

been a surge in interest in the field of Load Monitoring, also 

referred to as Energy Disaggregation, which involves methods and 

techniques for monitoring electric energy usage and providing 

appropriate feedback on usage patterns to homeowners. 

Unsupervised Non-Intrusive Load Monitoring is a key area of 

study, and practical solutions have wide implications for energy 

monitoring. In this paper, a low-complexity unsupervised NILM 

algorithm is presented, which is designed toward practical 

implementation. The algorithm is inspired by a fuzzy clustering 

algorithm called Entropy Index Constraints Competitive 

Agglomeration (EICCA), but facilitated and improved in a 

practical load monitoring environment to produce a set of 

generalized appliance models which are used to detect appliance 

usage within a household. Experimental evaluation conducted 

using energy data from Reference Energy Data Disaggregation 

Dataset (REDD) indicates that the algorithm has out-performance 

for event detection compared with recent state of the art work for 

unsupervised NILM when considering common NILM metrics 

such as Accuracy, Precision, Recall, F1-Measure, and Total 

Energy Correctly Assigned (TECA). 

 
Index Terms—Home Energy Management, Non-Intrusive Load 

Monitoring, Unsupervised Learning, Appliance Modeling 

 

I. INTRODUCTION 

Understanding the way people consume electric energy has a 

number of widespread benefits. From the viewpoint of 

consumers, they can tell exactly how their daily activities are 

contributing to their energy bill, and furthermore what they can 

do to improve their energy usage. On the side of the energy 

suppliers, the provision of such electric energy consumption 

information can enable them to better align their electric energy 

generation and transmission with the requirements of 
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consumers. Given the increasing need for electric energy with 

the continued growth of IoT technologies and the growing 

inclusion of individuals who previously had no access to 

electricity to the national electricity grid, it is important to 

ensure the optimal usage of this resource. While a number of 

nations, mainly developed nations, have begun to widely adopt 

renewable sources of energy, quite a number still rely on coal-

powered electricity generation which has a significant effect on 

the environment, both on local and global scales. In summary, 

understanding how people utilize electric energy can be 

beneficial to both financial standing and also well-being. 

Modern approaches to energy management utilize Smart 

Home technologies to enable energy efficiency and 

conservation [1] [2] [3]. While these approaches are extremely 

beneficial, the required infrastructure presents a barrier for 

adoption. The work presented in this paper takes into 

consideration home environments that are resource constrained 

but require a means to monitoring energy usage nonetheless. 

Achieving the goals of energy efficiency and energy 

conservation first requires the ability to monitor electric energy 

usage. This is done via smart meter technology which has seen 

a surge in deployments in recent years. Smart meters are able to 

capture the electric energy signal and transmit it to networked 

devices in order to offer further analysis and data mining. Such 

a process is referred to as Load Monitoring or alternatively 

Energy Disaggregation. Load Monitoring is categorized as 

either Intrusive, Semi-Intrusive, or Non-Intrusive. Intrusive 

Load Monitoring (ILM) monitors energy usage via smart 

meters that are attached to each appliance or device that needs 

monitoring. Semi-Intrusive Load Monitoring (SILM) utilizes a 

subset of smart meters to capture a subset of electric energy 

usage and infers the rest. Lastly, Non-Intrusive Load 

Monitoring (NILM) makes use of a single smart meter which 

captures the aggregated electric energy signal. The goal is then 
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to discover the appliances that are contributing to the 

aggregated signal. NILM is the preferred approach for real-

world solutions due to the fact that it has a reduced financial 

cost and lessens the burden of involvement for the energy 

monitoring process on the user or homeowner. Equation (1) 

presents a summary of the NILM problem. 

 𝑃(𝑡) = ∑ 𝑃𝑖
n
i=1 + 𝑒(𝑡) (1) 

where 𝑃(𝑡) is the total power load as seen at time 𝑡, 𝑃𝑖  is the 

individual power contribution of appliance i, and 𝑒(𝑡) is a small 

noise or error term. 

Unsupervised learning has recently gained popularity in 

NILM work. The main benefit of unsupervised learning is the 

removal of the dependence on a set of training data. This results 

in solutions that can be deployed and learn according to the 

environment where they operate, and therefore greatly 

simplifies the entire process. One of the major challenges with 

the application of unsupervised learning in NILM is minimizing 

the computational complexity as solutions will be deployed in 

resource constrained environments such as homes. In this work, 

a fuzzy clustering algorithm is proposed for NILM to address 

this challenge. An unsupervised approach is therefore presented 

to provide a low-complexity NILM solution, and a practical 

approach to offering informative feedback to homeowners.  

The rest of the paper is structured as follows: Section II 

provides a review of recent research work on NILM. Section III 

introduces the proposed algorithm and provides a walkthrough 

of its sub-components. The evaluation of the algorithm is 

presented in Section IV with additional discussion on the 

outcomes of experimental evaluation processes. Lastly, Section 

V presents a summary of the research work and a discussion on 

possible future extensions. 

II. RELATED WORK 

NILM was first proposed by Hart in the 1990s [4]. Since then 

numerous research work has been published with 

improvements to the initial design and different approaches all 

with the goal of achieving the same objectives. The typical 

NILM workflow consists of the following steps: 1) Power 

Signal Acquisition, 2) Event Detection, 3) Feature Extraction, 

and, 4) Learning & Inference. The first step involves acquiring 

aggregated energy measurement at an adequate rate so that 

distinctive load patterns can be identified. Low sampling rates 

of 1Hz are typically used for NILM as they can be captured by 

smart meters without modification. High-frequency sampling 

rates require sophisticated hardware which can introduce 

additional costs to the energy monitoring process. With the 

aggregated energy having been acquired, the next step is then 

to detect the operating states of appliances. The current NILM 

approaches can be classified as event-based or state-based, 

depending on the event detection strategies that are utilized. 

Event-based approaches focus on state transition edges 

generated by appliances and use change detection algorithm to 

identify the start and end of an event [5] [6]. All appliance types 

have a unique energy consumption pattern often termed as 

appliance signatures. This unique energy consumption pattern 

is often used to uniquely identify and recognize appliance 

operations from the aggregated load measurements [7]. There 

are two main classes of appliance signatures used by NILM 

researchers for appliance identification, namely, transient 

features and steady-state features. Transient features are short-

term fluctuations in power or current before settling into a 

steady-state value. These features uniquely define appliance 

state transitions by extracting features such as shape, size, 

duration, and harmonics of the transient [7]. Steady state 

features are related to more sustained changes in power 

characteristics when an appliance changes its running state, as 

shown in Fig. 1. These features include commonly cited active 

power, reactive power, current, and current and voltage 

waveforms. The final step of the NILM process is then to 

analyze the extracted appliance signatures and learn a set of 

appliances models that can be used to infer the electric energy 

consumption. 

 
Several state of the art unsupervised NILM algorithms have 

been proposed using different approaches including variants of 

Hidden Markov Models (HMMs), and most recently Graph 

Signal Processing (GSP), and Deep Learning. 

Several HMM-based NILM algorithms for energy 

disaggregation at low sampling rate have been proposed in the 

literature. In [8] an unsupervised technique for energy 

disaggregation using a combination of four FHMM variants is 

proposed. The authors use low-frequency real power feature 

and assume a binary state of appliances (ON and OFF state 

only). To learn model parameters, Kim's approach uses 

Expectation Maximization (EM) algorithm and employ 

Maximum Likelihood Estimation (MLE) algorithm to infer 

load states. The performance of Kim's technique is limited to 

few number of appliances, requires appliances to be manually 

labelled after disaggregation, and suffers from high 

computational complexity which makes it unsuitable for real-

time applications [9]. 

The work presented in [10] proposes a new inference 

algorithm for unsupervised energy disaggregation called 

Additive Factorial Approximate MAP (AFMAP) that is 

computationally efficient and does not suffer from local optima. 

The AFMAP algorithm is used to perform approximate 

inference over the additive FHMM. However, the model 

requires appliances to be manually labelled after off-line 

disaggregation and have a low performance for electronics and 

kitchen appliances. 

Parson et al. [11], introduce an approach that uses a different 

HMM from [10] as Bayesian network for disaggregation of 

active power with 60s sampling rate. To perform inference, the 

 
Fig. 1.  Rising and falling edges possibly indicating changes in state of 

appliances and therefore significant events of energy usage. 
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authors use an extension of the Viterbi algorithm and propose 

an EM training process to build a generic appliance model for 

learning the model parameters. This generic model is then tuned 

to specific appliance instances using only aggregate data from 

home in which NILM is being applied. 

A fully unsupervised NILM framework based on non-

parametric FHMM using low-frequency real power feature is 

presented in [12]. They use the combination of slice sampling 

and Gibbs sampling to do inference that simultaneously detect 

number of appliances and disaggregate the power signal from 

the composite signal. However, for larger disaggregation 

problems this inference algorithm becomes a limitation as it 

may get stuck in local optima [13]. 

Makonin et al. [14] present an NILM algorithm for low-

frequency sampling rate that uses a super-state HMM in which 

a combination of modeled appliances states is represented as 

one super state. The authors propose a new variant of Viterbi 

algorithm called sparse Viterbi algorithm. This algorithm 

performs computationally efficient exact inference instead of 

relying on approximate inference method like in FHMM based 

approach. 

Despite the fact that HMM-based NILM approaches have 

been widely used in energy disaggregation they require an 

expert knowledge to set a-priori values for each appliance state. 

Their performance is therefore limited by how well the 

generated models approximate appliance true usage [15]. 

Graph Signal Processing (GSP) or signal processing on graph 

is an emerging field that extends classical signal processing 

theory to data indexed by general graphs [16]. GSP represents 

a dataset using a graph signal defined by a set of nodes and a 

weighted adjacency matrix [17]. 

The first GSP-NILM approach that is neither state-based nor 

event-based was presented in [18]. The authors, leverage on the 

work by [19] to perform low-complexity multi-class 

classification of the acquired active power readings without the 

need for event detection to detect appliance changing states. 

However, this approach is supervised and employs GSP only 

for data classification [17]. 

Zhao et al. [15, 17] propose a blind, low-rate and steady state 

event-based GSP approach that does not require any training. 

The proposed GSP-NILM disaggregates any aggregate active 

power dataset without any prior knowledge and relies upon the 

GSP to perform adaptive threshold, signal clustering and 

pattern matching. 

Different Deep Learning architectures such as Recurrent 

Neural Network (RNN) [20], Convolutional Neural Network 

(CNN) [20] [21] [22], Auto Encoder [20] and a combination of 

Deep Learning and HMM [22] [23] [24] have been employed 

to the energy disaggregation problem. While Deep Learning 

approaches have achieved success in NILM with regards to 

accuracy, the dependence on large amounts of data in order to 

be well generalized are a hindrance for real-world applications. 

Additional approaches for NILM include fuzzy sets [25] 

[26], decision trees [27] [28], support vector machines [29] 

[30], sparse coding [31] [32], metaheuristics [33], integer 

programming (IP) [34] [35], and cepstrum-smoothing [36]. 

Further review of approaches in NILM are presented in [37] 

[38] [39]. 

The work presented here is an extension of our previous work 

[40] [41] which introduced an unsupervised NILM algorithm 

based on Competitive Agglomeration (CA) [42] and 

subsequently Entropy Index Constraints Competitive 

Agglomeration (EICCA) [43]. In this paper we present our 

modified unsupervised NILM algorithm which provides an 

approach to learning appliance models without any reliance on 

prior information or data, with the goal of providing 

informative feedback to homeowners. 

III. PROPOSED WORK 

The proposed algorithm is subdivided into a set of modules, 

each focusing on a single aspect of the NILM process. Due to 

the ease of installation and minimal cost we only consider the 

use of a single smart meter which captures the data at a low-

sampling rate of 1Hz. We further consider the use of the active 

power (P) appliance signature due to the fact that it can be 

extracted from the energy signal using a simple process. 

A. Architecture 

The proposed algorithm is envisioned to function as part of a 

wider framework encompassing the NILM process in a 

household. This framework requires a minimal architecture 

which includes a smart meter and a low-power energy device 

for processing the data and disseminating information to 

homeowners. This architecture can be seen in Fig. 2. 

 

B. Algorithm Overview 

1) Data Acquisition 

The initial step is to get the necessary data required by the 

algorithm. This process begins by acquiring the aggregated 

energy data via a smart meter attached to the mains of the 

household. This data is then transmitted to a low-power energy 

device that handles the processing of the data and further 

communication to the homeowner. 

2) Event Detection and Feature Extraction 

The initial step in the processing pipeline is detecting the 

usage of appliances given the aggregated energy data and 

extracting features that can be used to model appliances. This is 

done by recognizing events which denote significant changes in 

power which could be attributed to an appliance changing from 

one state to another. The assumption made in this step is that 

only a single appliance will change its state during the time 

 
Fig. 2.  Overview of energy disaggregation framework. Energy data is 
acquired at rate of 1Hz using a smart meter, and then sent to a low-power 

device for further processing. The low-power devices processes the data and 

provides feedback to the homeowner enabling them to be better informed 

about their electric energy usage. 
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interval. To extract the features we first need to establish a 

significance threshold which will be used to filter out those 

events that do not provide useful information. In this work we 

utilize a significance threshold of 5W which accounts for low 

power devices such as phone chargers. The feature extraction 

process is summarized in (2).  

 ∆𝑃𝑡𝑖
=  𝑃𝑡𝑖+1

−  𝑃𝑡𝑖
 (2) 

where ∆𝑃𝑡𝑖
 is the difference in active power between two 1 

second intervals 𝑃𝑡𝑖+1
 and 𝑃𝑡𝑖

. If ∆𝑃𝑡𝑖
 ≥ 5𝑊then the event is 

denoted as being significant and the difference is stored as a 

feature for further use. 

The extracted features consist of both negative and positive 

transitions. Given that a negative transition will likely have a 

corresponding positive transition of similar magnitude and 

vice-versa we simplify the features by transforming them into 

an invariant form which is done by converting them to their 

absolute form. This similarity between positive and negative 

transitions can be seen in Fig. 3 which displays the distribution 

of a set of features extracted from single day energy usage in a 

household. 

 
Once the features have been extracted they are then reduced 

to a generalized form via clustering. In order for this process to 

be unsupervised the number of feature clusters need not be 

fixed. We therefore make use of an adaptation of the EICCA 

which is a clustering technique that begins with an over-

specified number of clusters, and gradually reduces this number 

by making cluster members compete for membership among 

the clusters. Clusters with low cardinality are eliminated upon 

every iteration until the clusters stabilize. This trait makes an 

adapted EICCA suitable to discover potential appliance types 

in the aggregated energy data. Such an approach also avoids 

additional steps required to specify the number of appliance 

types upfront. 

3) Model Learning and Inference 

The output of the Event Detection and Feature Detection step 

is a set of generalized features. These features can be used to 

attribute the energy usage to a group of commonly recognized 

power states. In order to better inform homeowners of their 

energy usage, these features need to be transformed into 

appliance models which are a composite of features. The 

appliance models can then better describe the energy usage to 

the homeowner. 

Appliance models can be broadly categorized as those with 

two states (ON/OFF), and those with multiple states. 

Appliances with ON/OFF states are referred to as Type I in 

NILM. Multiple state appliances covers finite states, constantly 

ON, and continuously variable states, which are referred to as 

Type II, Type III, and Type IV respectively. To define the 

appliance models we consider two scenarios: 

a) Two State Appliance Models 

Given that the features represent both positive and negative 

transitions with the same magnitude they are each expanded 

into two-state appliance models with the positive transition 

representing the ON state and the negative transition 

representing the OFF state. 

b) Multi-State Appliances Models 

To define multi-state appliance models we further examine 

the aggregated energy signal and try to match a pattern of usage 

where two significant events occur subsequently. This is done 

in two phases where we consider significant events that occur 

immediately after one another, and those that are separated by 

a single time window of steady-state. The defined appliance 

models are then stored for further use in inferring their usage. 

The final step is to recognize the usage of appliance models 

in the aggregated energy signal. As the features are generalized, 

exact matches to significant events are not possible, we 

therefore considered a significant event as being recognized if 

the feature matched it within a 5% error margin and within 5W 

of the magnitude of the significant event. The latter condition is 

introduced to cater for small variations that exceed the 5% error 

margin but are actually within 5W of the actual event. The 

process for the model inference is two-fold, and is as follows: 

a) Evaluation of Feature and Appliance Model 

The first task is to evaluate the features and appliance models 

to verify whether they are suitable for further use in appliance 

usage recognition. This considers common NILM metrics such 

as Accuracy, Precision, Recall, F1-Measure, and Total Energy 

Correctly Assigned (TECA), which will be further discussed in 

Section IV-A. 

b) Recognition of Appliance Model Usage 

The second task is to detect significant events and attribute 

the energy consumption to the defined appliance models. This 

is done by monitoring the aggregated energy signal and 

comparing each significant event to the existing appliance 

models. Each matched significant event is tied to the operation 

of an appliance model, which can be used to denote patterns of 

energy usage in a household, and to identify periods of high 

energy consumption during the day. 

IV. EXPERIMENTAL EVALUATION 

To validate and evaluate the proposed work, a set of 

experiments have been conducted making use of energy data 

provided by the six houses in the Reference Energy Data 

 
Fig. 3.  Feature distribution from a single day of energy usage. 
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Disaggregation Dataset (REDD) [44]. 

The experiments were setup to validate the performance of 

the algorithm in accordance to commonly cited NILM metrics, 

and most importantly the feasibility of the algorithm for 

practical implementation. In Context 1 we considered the 

disaggregation of energy data from the six REDD houses for 

both a single day period and over a three day period. In Context 

2 we focused on the feasibility of the algorithm using single day 

energy data from REDD House 2. We further evaluated our 

approach to model learning and inference in this context. 

Context 3 verifies the performance of the algorithm when run 

on a low-power energy device. The main focus of the 

experimentation was data from House 2 of REDD due to its 

common use for additional experimental evaluation outside of 

the NILM performance metrics in literature, and sufficient level 

of appliance complexity for evaluating energy disaggregation. 

The parameters of the adapted EICCA were set as follows: 

Cmax = 100; η = 5; τ = 10, ε = 10-3; and ε1 = 0.05. 

The algorithm and experiments were implemented using 

Python 3.6 and made use of the NumPy and Pandas libraries. 

The experiments were conducted on a Dell Inspiron 14z-N411 

computer running a Core i5-2450M processor with 8GB RAM, 

and 1TB storage. Context 3 was performed on a Raspberry Pi 3 

Model B running a 64-bit Broadcom BCM2837 ARM v8 

processor with 1GB RAM and 2GB storage.  

A. NILM Metrics 

NILM has a number of metrics that are used to evaluate 

different approaches used by researchers. For our experiments 

we considered a subset of the commonly cited metrics namely, 

Precision (3), Recall (4), F-Measure (5), Total Energy Correctly 

Assigned (TECA) (6), and Accuracy (7), in order to evaluate 

the performance of the algorithm. 

 Precision (P)  = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3) 

 Recall (R) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

 f − Measure (𝑓1) = 
2· 𝑃·𝑅

𝑃+𝑅
 (5) 

 𝑇𝐸𝐶𝐴 = 1 −  
∑ ∑ |𝑦̂𝑡

(𝑖)
−𝑦𝑡

𝑖|𝐾
𝑖=1

𝑇
𝑡=1

2 ∑ 𝑦̅𝑡
𝑇
𝑦=1

 (6) 

 Accuracy (𝐴𝑐𝑐. ) =  
𝑇𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (7) 

Where Precision is the positive predictive values, Recall is 

the true positive rate or sensitivity, TP is true-positives 

(correctly predicted that the appliance was ON), FP is false-

positives (predicted appliance was ON but was OFF), and FN 

is false-negatives (appliance was ON but was predicted OFF). 

F-Measure is the harmonic mean of Precision and Recall, and 

TECA measures the amount of energy that was correctly 

classified. 

B. Experiments 

1) Context 1: Algorithm Performance 

The evaluation process of the algorithm considered single 

day and three energy data gathered from REDD houses 1 to 6. 

The first step was to validate the chosen method for event 

detection and feature extraction. Fig. 4 presents the distribution 

of the features given their original form and after transformation 

by the feature extraction process from both single day and three 

day energy usage. The transformed features can be seen to 

retain their magnitude while taking on a positive only form. 

This indicates that our chosen approach is valid and ensures that 

the feature space is reduced which further simplifies future 

processing given a resource constrained environment. 

 
With the features having been extracted and transformed, the 

next step was to generalize them using the clustering algorithm. 

The results of this process for features from REDD House 2 can 

be seen in Fig. 5. 

 
The results indicate that the proposed algorithm enables us to 

generalize the features and produce a set that can be considered 

for model learning. Given that this process has discovered the 

“optimal” set of features from the initial set, it can then be 

justified that the work presented utilizes an unsupervised 

learning approach to energy disaggregation. 

 
Fig.4. (a) Single day actual feature distribution (b) Single day transformed 

feature distribution (c) Three day actual feature distribution (d) Three day 

transformed feature distribution, from REDD House 2. 

 
Fig.5. Generalized features from (a) single day energy usage (b) three day 

energy usage, from REDD House 2. 
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The final step of this section is to evaluate the performance 

of the algorithm using the generalized features and the subset 

of NILM metrics mentioned in Section IV-A. The results of the 

evaluation process for single day and three day energy usage 

can be seen in Table I and Table II respectively. 

The evaluation metrics provide an indication that the 

algorithm has good performance in terms of recognizing events 

that occurred in aggregated energy for each of the six REDD 

houses. The results for Accuracy, Precision, Recall, and F1-

Measure were generally good for both single day and three day 

energy usage. However a dip in performance can be seen in 

these metrics for House 3 for three day energy usage, which 

could possibly indicate a period of increased complexity in 

terms of appliance composition. The TECA metrics varied 

across houses with lowest performance in houses 1, 3, and 6. 

These houses are known to have a larger number of appliances 

in use which could be contributing factor to these results. 

However the performance for this metric is also generally good 

across houses and periods of energy usage. 

In summary, the algorithm performed generally well given 

energy with varying complexity. It can also be seen that the 

generalized features are able to detect quite a high number of 

the energy usage events occurring in the energy usage for the 

six REDD households. This is further indicated in Fig. 6 which 

provides a comparison between the actual significant events 

(Fig. 6a and Fig. 6b) and the detected significant events (Fig. 6c 

and Fig. 6d). 

 
A comparison was made between this work and recent state 

of the art approaches which utilize similar metrics and energy 

data for evaluation. Given the wide variety of techniques used 

in NILM research work, direct comparisons between 

experimental results are not possible, as taken into 

consideration for this evaluation. The comparison between 

single day energy disaggregation and the state of the art work is 

presented in Table III. The comparison indicates that the 

proposed approach generally has better performance across 

metrics when compared to some of the similar recent state of 

the art NILM algorithms.  

 

2) Context 2: Modeling Learning and Inference 

Single day energy data from REDD House 2 was used in 

 
Fig.6. Comparison between Actual significant events shown in (a) and (b) 

and Detected significant events shown in (c) and (d), from single day 

energy usage in REDD House 2. 

TABLE I 
NILM METRICS FOR SINGLE DAY ENERGY USAGE 

REDD 

House 
Acc.  (%) P (%) R (%) 𝑓1 (%) TECA (%) 

1 94.71 93.71 95.58 94.63 81.40 

2 98.36 98.58 97.80 98.18 91.73 

3 97.90 97.74 97.92 97.83 91.95 

4 98.98 99.02 98.86 98.94 93.65 

5 99.20 99.36 98.73 99.04 98.84 

6 97.93 97.69 98.14 97.91 83.25 

 
TABLE II 

NILM METRICS FOR THREE DAY ENERGY USAGE 

REDD 

House 
Acc.  (%) P (%) R (%) 𝑓1 (%) TECA (%) 

1 95.96 95.67 96.17 95.92 63.61 

2 98.90 98.97 98.60 98.79 93.89 

3 88.99 85.39 90.44 87.84 77.16 

4 97.80 97.32 98.22 97.77 90.82 

5 95.04 94.46 94.59 94.52 75.13 

6 97.37 97.01 97.61 97.31 83.10 

 

TABLE III 
COMPARISON WITH STATE OF THE ART 

Approach 
Acc.  
(%) 

P (%) R (%) 𝑓1 (%) 
TECA 

(%) 

FHMM 

[10] 
- 82.70 60.30 71.29 - 

HDP-

HSMM 

[45] 
- - - - 81.50 

DTW [46] - 91.24 81.77 86.16 - 

House 1 94.71 93.71 95.58 94.63 81.40 

House 2 98.36 98.58 97.80 98.18 91.73 

House 3 97.90 97.74 97.92 97.83 91.95 

House 4 98.98 99.02 98.86 98.94 93.65 

House 5 99.20 99.36 98.73 99.04 98.84 

House 6 97.93 97.69 98.14 97.91 83.25 
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order to evaluate the chosen approach to model learning and 

inference. The energy usage for the single day can be seen in 

Fig. 7. 

 
The first step was to verify the multi-state appliance 

modeling process. As mentioned in Section III-A, the algorithm 

aims to define multi-state appliance models. The detected 

events were examined by the algorithm, and subsequently 

detected events were combined into multi-state models. A 

further step was taken to merge models based on commonalities 

in feature usage. Fig. 8 displays all the discovered appliance 

models and the interactions of their internal states for the given 

period of energy usage, and a subset of these appliance models 

is provided in Fig. 9. Fig. 8 and Fig. 9 indicate that there are 

some common patterns in the energy usage based on the 

internal state interactions of the appliance models. The patterns 

are more pronounced in Fig. 9 which shows that these 

interactions could possibly represent the usage of certain types 

of appliances. Given the large number of generated appliance 

models as seen in Fig. 8, the goal for future work will be to 

reduce them to a manageable set that represents operations that 

are similar to real world devices. 

 

 
The final step was to use the discovered appliance models to 

provide insights on future energy usage. To achieve this the 

appliance models learnt from a single day of usage were used 

to track energy usage in the following day (Fig. 10). 

 
To limit complexity, the experiment was conducted using the 

two-state appliance models. To provide valuable feedback to 

the homeowner, the outcome of this step was to highlight events 

of high energy usage during the day. High energy usage was 

defined as any power usage over 350W, and the results are 

displayed in Fig. 11, which shows that sporadic occurrences of 

high energy usage throughout the day with a majority of the 

occurrences happening late in the night. 

Additionally NILM metrics were used to evaluate the energy 

disaggregation for the new period, and these are shown in Table 

IV. The metrics indicate that the appliance models discovered 

in the previous day can be applied to subsequent periods of 

energy usage. The results of the energy disaggregation, in 

particular the TECA metric, however indicates that new 

features may need to be incorporated to insure that previously 

unseen patterns of energy usage can be better detected. 

 
Fig.7. Single day energy usage from REDD House 2. 

 
Fig.8. Internal state interactivity for all discovered appliance models during 

single day energy usage from REDD house 2. 

 
Fig.9. Internal state interactivity for subset of discovered appliance 

models during single day energy usage from REDD house 2. 

 
Fig.10. Energy usage in subsequent day of REDD house 2. 

TABLE IV 

NILM METRICS FOR SUBSEQUENT DAY ENERGY USAGE 

REDD 

House 
Acc.  (%) P (%) R (%) 𝑓1 (%) TECA (%) 

2 96.20 96.79 94.71 95.74 87.95 
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3) Context 3: Energy Disaggregation on Raspberry Pi 

The final experiment was to verify the performance of the 

algorithm when run on a low-power energy device. We made 

use of the same energy data from REDD House 2 as in Section 

IV-B2. The algorithm performed the disaggregation within 

416s and produced the metrics shown in Table V. 

C. Discussion 

The results of the experimental evaluation indicate that the 

algorithm performs well given both single day and three day 

energy usage. This along with the ability to learn useful 

appliance models in unseen energy data indicates that it is 

feasible for the unsupervised NILM problem. It has been noted 

that further work is required in order to produce a set of well-

defined appliance models that can mimic real appliance usage, 

and this will form part of the future work. 

The experiments conducted on the Raspberry Pi indicate that 

the algorithm can perform well implemented on a low-power 

energy device thus showing that it can be implemented for 

actual use. 

V. CONCLUSION 

This paper presents a new approach to the unsupervised 

NILM problem with practical implications. Experimental 

evaluation using energy data from six houses of the Reference 

Energy Disaggregation Dataset (REDD) demonstrates that the 

proposed algorithm performs well with regards to energy 

disaggregation. Further experimentation also indicates that the 

algorithm can learn useful appliance models that can be used to 

provide insights on energy usage to homeowners. It has been 

noted that the chosen approach to appliance modeling requires 

some additional steps to provide a set of well-defined appliance 

models, and this will form part of the future research work. 
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